Факультет математики, природничих наук та технологій

Постійне посилання на фондhttps://dspace.cusu.edu.ua/handle/123456789/58

Переглянути

community.search.results.head

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Залучення учнів до наукової діяльності (на прикладі підготовки команд до участі в олімпіадах та турнірах юних математиків)
    (РВВ ЦДПУ ім. В. Винниченка, 2019) Ізюмченко, Людмила Володимирівна; Гаєвський, Микола Вікторович; Изюмченко, Людмила Владимировна; Гаевский, Николай Викторович; Iziumchenko, Liudmyla Volodymyrivna; Haievskyi, Mykola Viktorovych
    (ua) Розв’язування конкурсних та олімпіадних задач учнями і студентами є гарним підґрунтям та підготовкою до майбутньої наукової діяльності. У статті розкриваються математичні аспекти підготовки учнів до розв’язування конкурсних завдань на прикладі однієї задачі (доведення нерівності та її узагальнення), запропонованої на ХХІІ Всеукраїнському турнірі юних математиків імені професора М.Й. Ядренка. До задачі наведено декілька різних способів її доведення, у тому числі використання фактів елементарної математики, метод Штурма, метод математичної індукції; проаналізовані можливості доведення іншими способами, їхні переваги та недоліки; проведено порівняння з точки зору вікових можливостей дослідників; визначено оптимальний спосіб доведення з позиції знань школярів; проведено паралель між олімпіадною задачею та даною нерівністю, показано, як з використанням результатів олімпіадної задачі можна довести нерівність.
  • Ескіз
    Документ
    Готуємось до математичних конкурсів: задачна серія на метричні співвідношення у чотирикутнику
    (РВВ ЦДПУ ім. В. Винниченка, 2020) Ізюмченко, Людмила Володимирівна; Изюмченко, Людмила Владимировна; Iziumchenko, Liudmyla Volodymyrivna
    (ua) Розв’язування конкурсних та олімпіадних задач учнями і студентами є гарним підґрунтям та підготовкою до майбутньої практичної та наукової діяльності. У статті розкриваються математичні аспекти підготовки учнів до розв’язування конкурсних завдань на прикладі однієї задачі (співвідношення між площами трикутників, які утворюються при перетині діагоналей опуклого чотирикутника), котра лежить в основі багатьох конкурсних завдань з геометрії; до задачі наведено розв’язання з використанням фактів елементарної математики, доступної для учнів восьмого класу загальноосвітньої школи; проведено аналіз спектру конкурсних завдань різних математичних турнірів, для яких розглянута опорна задача є ключовою підзадачею у розв’язанні. Створена авторська конкурсна задача для учнів старших класів, яка дозволяє інтегрувати в геометричну оболонку суто теоретико-числову задачу з дослідженням простоти елементів, подільності добутку на просте число, взаємної простоти елементів, з необхідністю знаходити розв’язки діофантового рівняння у натуральних числах.
  • Ескіз
    Документ
    Застосування методів математичного аналізу для доведення олімпіадних нерівностей
    (РВВ ЦДПУ ім. В. Винниченка, 2020) Гаєвський, Микола Вікторович; Гаевский, Николай Викторович; Haievskyi, Mykola; Ізюмченко, Людмила Володимирівна; Изюмченко, Людмила Владимировна; Iziumchenko, Liudmyla; Ключник, Інна Геннадіївна; Ключник, Инна Геннадиевна; Kliychnyk, Inna
    (uk) Нерівності займають важливе місце в математиці, зустрічаються у всіх розділах математики і мають безліч різних застосувань. Доведення нерівностей справляє значний вплив на формування та розвиток творчого мислення та творчої особистості учня в силу наявності різних способів доведення для нерівності. В статті досліджуються особливості підготовки учнів методам доведення конкурсних та олімпіадних нерівностей, в яких міститься величина виду f x f x f x  1 2       ...  n  із фіксованою сумою змінних 1 2 , ,..., . n x x x Розглянуто особливості використання апарату диференціального числення на рівні школяра старшої школи. Проаналізовано можливості доведення нерівностей з використання дотичної чи твердження n-1 рівних значень, розглянуто їх переваги та недоліки. За допомогою даних понять можна алгоритмізувати процес доведення деяких типів нерівностей. Для деяких задач наведено різні способи доведення, дані методи розв’язування нерівностей вимагають від учнів знання основ диференціального числення.